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A B S T R A C T  
 

The quantification of credit portfolio losses using the wavelet approach offers an innovative 
methodology for assessing the financial risks associated with credit. This approach uses 
advanced mathematical techniques to analyse temporal fluctuations in credit data. In terms of 
quantifying losses, the wavelet approach allows the decomposition of loss time series into 
different time scales. This makes it possible to identify short- and long-term trends as well as 
irregular variations. By analysing these scales, analysts can better understand the dynamics of 
credit losses and identify the underlying factors that contribute to fluctuations. To quantify 
credit portfolio losses, the cumulative loss function is approximated by a finite combination 
of wavelet basis functions by computing the coefficients of the wavelet approximation (WA). 
Wavelet approximation is an accurate, robust and fast method that enables VaR to be 
estimated much more quickly than with other loss quantification methods, such as the Monte 
Carlo MC method. 

 

 

 

 

 
  

1 Introduction 

This template provides authors with most of the formatting specifications needed for preparing electronic 
versions of their papers. All standard paper components have been specified for three reasons: (1) ease of use 
when formatting individual papers, (2) automatic compliance to electronic requirements that facilitate the 
concurrent or later production of electronic products, and (3) conformity of style throughout a conference 
proceedings. Margins, line spacing, and type styles are built-in; examples of the type styles are provided 
throughout this document and are identified in italic type, within parentheses, following the example. Some 
components, such as multi-leveled equations, graphics, and tables are not prescribed, although the various table 
text styles are provided. The formatter will need to create these components, incorporating the applicable 
criteria that follow. 

In the context of credit risk management, particular attention is paid to the distribution of losses in the 
portfolio. Since portfolio loss is often modelled as the sum of random variables, the predominant task is to 
evaluate the probability density function (PDF) associated with this loss distribution. This PDF of a sum of 
random variables is equivalent to the convolution of the respective PDFs of the loss distributions of the 
individual assets. Performing this evaluation analytically poses a considerable challenge and requires 
significant computational intensity. In general, this approach is not feasible for realistically sized portfolios [1]. 
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Monte Carlo simulation is a common approach to assessing the risk of a credit portfolio. However, this method 
becomes time-consuming as the size of the portfolio increases. In many circumstances, calculations can become 
difficult to perform, especially given the frequent need for financial institutions to readjust their credit 
portfolios. 

Wavelets offer the flexibility to capture complex and changing patterns in time series. They can 
accommodate non-linear variations and discontinuous behaviour, which can be particularly useful in the 
context of credit losses, they can help identify the points at which losses in the credit portfolio undergo 
significant changes. This can help identify periods of increased volatility or significant credit events. 

Wavelet approximation is increasingly emerging in financial applications. Much of the research that has been 
done by researchers such as: "High-frequency wavelet analysis of financial time series" (2007) - This research 
by Huang, N. E., et al. examined the application of wavelets to high-frequency financial time series. "A wavelet 
analysis of MENA stock market risk: An application of the Continuous Wavelet Transform" (2018) - This 
research by Charfeddine, L., et al. applied the Continuous Wavelet Transform to the analysis of Middle Eastern 
and North African stock market risk. 

2 Methodology 

2.1 Credit portfolio losses 

A portfolio's estimated losses will be calculated as expected losses (EL) by modelling exposure at default 
(EAD), probability of default (PD) and Loss given default (LGD). For the banker, credit risk or counterparty 
risk is defined as "the risk that the customer will not honor his financial commitment. of a customer's failure to 
meet a financial commitment, in most cases a loan repayment, loan repayment". In a broader sense, 
counterparty risk also refers to the risk of deterioration in the borrower's financial health, which reduces the 
probability of repayment: default risk. repayment: default risk. After the expected losses until certain 
confidence level is called economic capital. The expected losses can be calculated with the following formula:  

ℒ = EAD × PD × LGD 

  

 

            

 

 

 

 

 
Figure 2 : Distribution of credit losses[2]  

Exposure at default (EAD) is the total value a bank is exposed to when a loan defaults. Using the internal 
ratings-based (IRB) approach, financial institutions calculate their risk. Banks often use internal risk 
management default models to estimate respective EAD systems. Probability of default (PD) is a financial term 
describing the likelihood of a default over a particular time horizon.  Loss given default or (LGD) is the share 
of an asset that is lost if a borrower defaults. It is a common parameter in risk models and also a parameter used 
in the calculation of economic capital, expected loss or regulatory capital under Basel II for a banking 
institution.  

For our research, we calculated these three parameters for three food industry companies in Morocco, based on 
the activity reports and bulletins generated by the Casablanca stock exchange. 

2.2 Value at Risk 
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Let us consider a portfolio with 𝑁 obligors and let 𝐹 be the cumulative distribution function of losses ℒ. 
Without loss of generality  

                                        𝐹(𝑥) = {
𝐹̅(𝑥),      if 0 ⩽ 𝑥 ⩽ 1,
1,      if 𝑥 > 1,

                                           (1) 

Value at Risk (VaR)[3] is a measure commonly used in finance to assess investment risk. It indicates the 
maximum amount of loss expected (in monetary terms or as a percentage) for an investment or portfolio, with a 
certain level of confidence and over a certain time horizon. 

Let X be loss distribution, at a level 𝛼 ∈ (0,1) the VaR is the smallest number y such as that the probability that 
𝑌 ≔ −𝑋 below 1 − 𝛼. Mathematically,  

                     
VaR𝛼⁡(𝑋) = 𝑖𝑛𝑓{𝑙 ∈ ℝ:ℙ(ℒ ≤ 𝑙) ≥ 𝛼} = 𝑖𝑛𝑓{𝑙 ∈ ℝ: 𝐹ℒ(𝑙) ≥ 𝛼}

= −𝑖𝑛𝑓{𝑥 ∈ ℝ: 𝐹𝑋(𝑥) > 𝛼} = 𝐹𝑌
−1(1 − 𝛼)

          (2) 

This is the measure selected in the Basel II Accord for calculating capital requirements. This means that a bank 
that manages its risks in accordance with Basel II must set aside an amount of capital to cover any extreme 
losses.[4] 

2.3 Wavelet approximation 

There are two functions that play a major role in wavelet analysis: the scaling function 𝜑 and the wavelet 𝜓. 
These two functions create a family of functions that can be used to decompose or reconstruct a signal. To 
emphasize the "marriage" involved in building this "family", 𝜙 is sometimes called the "parent wavelet" and 𝜓 
the "mother wavelet". The Haar scaling function is defined as: 

𝜙𝐻(𝑥) = {
1,      if 0 ≤ 𝑥 < 1
0,      elsewhere. 

(3) 

The Haar mother wavelet function can be described as:  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜓𝐻(𝑥) = {

1,  for 0 ≤ 𝑥 <
1

2

−1,  for 
1

2
≤ 𝑥 < 1

0,  otherwise ⁡

⁡⁡                                              (4) 

The drawback with the Haar decomposition is that both father and mother wavelet are discontinuous, and as a 
result, it provides only crude approximations to some continuous functions. 

By the Haar wavelet approximation, the approximation of the cumulative distribution function is:  

𝐹̅𝑚(𝑥) = ∑  

2𝑚−1

𝑘=0

𝑐𝑚,𝑘𝜙𝑚,𝑘(𝑥) (5) 

With 𝑐𝑚,𝑘 the approximation coefficient and m the level of resolution:  

                                    𝑐𝑚,𝑘 = ⟨𝑓, 𝜙𝑚,𝑘⟩= ∫  
+∞

−∞
𝑓(𝑥)𝜙𝑚,𝑘(𝑥)d𝑥                                            (6)    

And 𝜙𝑗,𝑘 translated version: 

                                                           𝜙𝑗,𝑘 = 2
𝑗

2𝜙(2𝑗𝑥 − 𝑘)                                                          (7) 

In the context of one-factor model [5], it is important to remember that if the systematic factor Y remains 

constant, failures occur independently. In effect, the only remaining source of uncertainty is idiosyncratic risk. 
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The moment generating function (MGF) is conditional on Y is thus given by the product of each obligor’s 

MGF: 

                        
𝑀𝐿(𝑠; 𝑌) ≡ 𝔼(e−𝑠𝐿 ∣ 𝑌) = ∏  𝑁

𝑛=1 𝔼(e
−𝑠𝐸𝑛𝐷𝑛 ∣ 𝑌)

= ∏  𝑁
𝑛=1 [1 − 𝑝𝑛(𝑦) + 𝑝𝑛(𝑦)e

−𝑠𝐸𝑛].
                                   (8) 

With 𝐸n = EAD of n obligors, Dn the indicator of default and Pn = PD of n obligors. 

If f is the probability density function of the loss function, then the unconditional moment generative function 

is: 

𝑀𝐿(𝑠) ≡ 𝔼(e−𝑠𝐿) = ∫  
+∞

0

e−𝑠𝑥𝑓(𝑥)d𝑥 = 𝑓(𝑠) (9) 

2.4 Calculation algorithm 

We can prove that  

0 ≤ 𝑐𝑚,𝑘 ≤ 2−𝑚/2, 𝑘 = 0,1,… , 2𝑚 − 1  

And 

0 ≤ 𝑐𝑚,0 ≤ 𝑐𝑚,1 ≤ ⋯ ≤ 𝑐𝑚,2𝑚−1. 

Based on an approximation at a certain level of resolution m, VaR can now be calculated quickly using m 

coefficients, due to the compact support of the basic functions:  

                                            𝐹̅(VaR𝛼) ≃ 𝐹̅𝑚(VaR𝛼) = 2
𝑚

2 ⋅ 𝑐𝑚,𝑘̅ ,                                   (10) 

For 𝑘̅ ∈ {0,1,… , 2𝑚 − 1}, we search VaR𝛼 by going through the following steps: first, we compute  𝐹̅𝑚 (
2𝑚−1

2𝑚
) 

, if 𝐹̅𝑚 (
2𝑚−1

2𝑚
) > 𝛼 then we compute 𝐹̅𝑚 (

2𝑚−1−2𝑚−2

2𝑚
) , after m steps storing the 𝑘̅ value such that 𝐹̅𝑚 (

𝑘̅

2𝑚
)  is 

the closest value to α in our m resolution approximation.[6,7] 

In fact, due to the stepped shape of the Haar wavelets approximation, 𝐹‾𝑚(𝜉) = 𝐹‾𝑚 (
𝑘‾

2𝑚
), for all 𝜉 ∈ [

𝑘‾

2𝑚
,
𝑘‾ +1

2𝑚
). 

In what follows let us take, VaR𝛼
𝑊(𝑚)

=
2𝑘‾ +1

2𝑚+1, the middle point of this interval, as the VaR value computed by 

means of this wavelet algorithm at scale 𝑚. 

3 Data and results  

Our objective is to calculate VaR using two approaches, the standard Monte Carlo approach and the advanced 

Haar wavelet approach. We will use data from Moroccan companies in the field of food industry for a recent 

period Lesieur, Cosumar and Labelvie. We will generate a Matlab code that calculates the VaR by the two 

approaches, also calculating the time needed to calculate the VaR by each approach, and also the error 

between each approach for a confidential level 95%. Our calculations and programming are done on a 

computer i5 4th generation 512 GB SSD, 16 GB RAM. 
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 N PD EAD LGD 

Lesieur 100 0,15 0,3rand 0,3+0,3rand 

Cosumar 200 0,15 0,52rand 0,63rand 

Labelvie 100 0,09 0,5rand 0,3rand 

Figure 3: research data combined by us 

Our data is collated from quarterly financial reports, studying the balance sheet to determine the amounts of 

long-term credit and accounting ratios based on the net income and financial of each company, setting the 

maturity T to one year and by applying the model of Merton, we calculated the PD, and also based on the 

rating agencies Moody’s for the quantification of parameter LGD, and also, we used the monthly editions and 

bulletins of sessions issued by the Casablanca Stock Exchange, we calculated EAD. And using MATLAB, we 

generated a program that calculates VaR in parallel using the Monte Carlo method and Wavelet 

approximation. For the number N, we have chosen a number which is not larger, because the data is not 

available for all durations, and also the characteristics of our machine are not sufficient to make a calculation 

for a large enough number. 

𝛼 = 5% VaR𝛼
𝑀𝐶  VaR𝛼

𝑊𝐴 Time ⁡𝑀𝐶  Time𝑊𝐴 RE⁡(𝛼,𝑚) 

𝐿𝑒𝑠𝑖𝑒𝑢𝑟 0,9023 0,8994 11,9879 1,4329 0,0032 

𝐶𝑜𝑠𝑢𝑚𝑎𝑟 0,7431 0,7412 18,6032 2,7149 0,0026 

𝐿𝑎𝑏𝑒𝑙𝑣𝑖𝑒 0,1191 0,1221 18,0531 2,7249 0,0251 

Figure 4: Programme results 

 

 

 

                  Figure 5 : VaR by MC and WA (Lesieur)                  Figure 6 : Calculation time (Lesieur) 
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 Figure 7: VaR by MC and WA (Cosumar)                Figure 8: Calculation time (Cosumar) 

 

4 Discussions  

For a risk level of 5%, we calculated the VaR of portfolios with different parameters using Matlab. Using the 

standard approach (MC) we found reasonable values, and using the haar wavelet approximation we also found 

a value approximating that of MC, which does not reflect a major difference between the two approaches. 

The most important point is the calculation time, graphs 4 and 6 show the difference between MC and WA, 

that is the time to calculate the VaR of a portfolio of 100 and 200 bonds, for example for N=200, the VaR 

requires 19 seconds for the calculation with Monte Carlo, against the wavelets just 3 seconds. 
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